пятница, 17 мая 2019 г.
Linear Regression: House Pricing
Housing Prices in Blowing Rock, NC A Hedonic digest Thomas Carter Economics 4000 1. Introduction A difficult characteristic to understand around the housing securities industry is how a outlay is given for a particular house. That determine will be designated to that particular house alone. All houses move over various pricing, so I raftt ever assume that one will cost more or less than any opposite. The pricing for houses substitute ground on their characteristics. Each characteristic must be analyzed to determine its contribution or detraction toward the expenditure.I have taken some of these characteristics and modeled the relationship amongst them and the price of current body politic for a specific bea. How are these characteristics used in ascertain the price? A model that is normally used in real estate appraisal is the hedonic regression. This method is specific to breaking downward items that are non homogenous commodities, to estimate value of its charac teristics and ultimately determine a price based on the consumers willingness to pay. The approach in estimating the values is done by measuring the differences in the price of certain(a) goods with regards to specific location.E. g. modal(a) cost of real estate is a good deal lower in Missouri than in California. Location may be the biggest factor in real estate pricing. 2. Data and Regression Analysis My data is for Blowing Rock, NC. Its a resort town in the Blue Ridge Mountains. The attractions here are mostly outdoor activities taking place in the secluded wilderness. The population is only about 1500 and the average cost of a house from my data is $485,839. 50. For my linear regression, I am modeling the relationship surrounded by the price of homes, being my dependent variable, and some characteristics of the omes, being my explanatory variables. Originally my data consisted of the following for real estate in Blowing Rock, NC price selling price, miles from central dema rcation district, calculate of bedrooms, number of full bathrooms, number of half bathrooms, the year the home was built, square footage, number of service departments, whether or non the house was located in a subdivision, lot size, if the house had a good view, number of days on the market, and difference surrounded by asking price and selling price. First I modeled a linear regression between price and all of my characteristics (see Table 1).To interpret these variables I have regressed, I look at the Coefficient towboat of the output. The sign of the number tells whether the characteristic increases or decreases the price. For each superfluous mile away from the central business district the price of a home decreases $25,002. 96. For each special bedroom the price increases $20,832. 78. For each supererogatory full bathroom the price increases $79,715. 21. For each additional half bathroom the price increases $123,988. 80. For every year that a house ages the price decre ases $2,355. 05. For every increase in one square-foot the price increases $93. 13.For each additional garage the price increases $26,249. 66. If the house is in a subdivision the price increases $25,999. 07. For each additional acre of visit the price increases 56,480. 75. If the home has a nice view(most likely of the Blue Ridge Mountains) the price increases 127,900. 10. For each additional day the home is on the market the price decreases $181. 04. Based on the specifyed R-squared I have determined that about 53. 38% of the price of homes in this town comes from these characteristics. Looking at the P values, not all are significant, thus some of these characteristics may play little part in determining the price.The insignificant characteristics were number of bedrooms, number of garages, and whether or not the home was in a subdivision. Some other weak variables were the number of days the home has been on the market and the difference between asking price and selling price. I feel that the number of days the house a house is on the market is a weak explanatory variable because a seller usually has an idea of what the house is worth, and stock-still if it does not sell immediately, they may be willing to wait or only need to adjust the price a little in order for it to sell.The difference in asking and selling price could be correlated with the number of days on the market and very similar reasoning as to why it is a weak variable. The seller will most likely not allow much difference in their asking and selling price because of the appraised value. Also, looking at the coefficients of these two variables, I can see that change in them do not impact the price very much. The number of bedrooms is not a significant characteristic because it is correlated with the square footage. It seems a little odd that the number of garages is insignificant.However, the sloshed number of garages for this data is above one, meaning the average house in Blowing Rock h as at to the lowest degree one garage. With a garage being fairly standard amenity for homes in Blowing Rock I can understand it not being a very significant factor on the price compared to the other characteristics. Living in a subdivision is not significant for this town as well. I took out the highly insignificant variables (bedrooms, garages, and subdivision) and modeled another regression (see Table 2). My adjusted R-squared improved to 54. 28%. Expand 3. Summary and ConclusionsTable 1 reg price miles bedrooms fullbath halfbath yearbuilt sqft garage sub soil vie ws days diff theme SS df MS Number of obs = 100 -+ F( 12, 87) = 10. 45 Model 6. 0522e+12 12 5. 0435e+11 Prob F = 0. 0000 residuary 4. 2002e+12 87 4. 8278e+10 R-squared = 0. 5903 -+ Adj R-squared = 0. 5338 Total 1. 0252e+13 99 1. 0356e+11 Root MSE = 2. 2e+05 price Coef. Std. Err. t Pt 95% Conf. Interval -+ miles -25002. 96 9499. 989 -2. 63 0. 010 -43885. 22 -6120. 706 bedrooms 20832. 78 44293. 87 0. 47 0. 639 -67206. 08 108871. 6 fullbath 79715. 21 40491. 55 1. 97 0. 052 -766. 1288 160196. 5 halfbath 123988. 8 45920. 12 2. 70 0. 008 32717. 59 215260 yearbuilt -2355. 046 1202. 24 -1. 96 0. 053 -4744. 596 34. 50387 sqft 93. 13114 50. 65843 1. 84 0. 069 -7. 557963 193. 8203 garage 26249. 66 28224. 21 0. 93 0. 355 -29849. 02 82348. 34 sub 25999. 07 56280. 61 0. 46 0. 645 -85864. 75 137862. 9 terra firma 56480. 75 13324. 99 4. 24 0. 000 29995. 88 82965. 61 views 127900. 1 48592. 63 2. 63 0. 010 31316. 96 224483. 2 days -181. 0406 126. 8538 -1. 43 0. 157 -433. 1762 71. 09506 diff . 5086182 . 3190536 1. 59 0. 15 -. 1255353 1. 142772 _cons 4541470 2363007 1. 92 0. 058 -155261. 1 9238202 Table 2 reg price fullbath halfbath yearbuilt sqft acres views days diff miles Source SS df MS Number of obs = 100 -+ F( 9, 90) = 14. 06 Model 5. 9915e+12 9 6. 6572e+11 Prob F = 0. 0000 Residual 4. 2609e+12 90 4. 7344e+10 R-squared = 0. 5844 -+ Adj R-squared = 0. 5428 Total 1. 252e+13 99 1. 0 356e+11 Root MSE = 2. 2e+05 price Coef. Std. Err. t Pt 95% Conf. Interval -+- fullbath 84256. 29 38750. 63 2. 17 0. 032 7271. 402 161241. 2 halfbath 131657. 9 43504. 03 3. 03 0. 003 45229. 58 218086. 3 yearbuilt -2286. 429 1165. 349 -1. 96 0. 053 -4601. 599 28. 74033 sqft 112. 8896 40. 74526 2. 77 0. 007
Подписаться на:
Комментарии к сообщению (Atom)
Комментариев нет:
Отправить комментарий